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AN APPROACH TO THE SOLUTION OF GEOMETRICALLY NONLINEAR PROBLEMS 
OF APPLIED SHELL THEORY* 

V.G. TRGSHIN 

A method is proposed for linearization of geometrically nonlinear equations of ap- 
plied shell theory /l/. The initial nonlinear problem is reduced to a sequence of 
linear problems for a shell having the additional parameters of flexural rigidity, 
curvature and torsion; these parameters are determined in the course of successive 
approximations. To construct the deformation curve, the entire process of applying 
the load is divided into a series of stages, at each of which the solution is found 
in a hyperplane perpendicular to a line passing through a points corresponding to 
the two preceding stages. By means of the algorithm , it is possible to construct 
the deformation curves for both single andmulti-parameter loads. 

Depending upon the level at which linearization is performed, existing methods of solving 
these nonlinear problems may be divided into three basic groups: (1) linearizationof asystem 
of algebraic (cf. /2/J and 12) ordinary differential equations /3/ to which the initial two- 
dimensional problem has been reduced; (3)linearization of a system of partial differential re- 
solvent equations. In a number of cases, there is a third, more preferable approach in which 
the process of linearization of the initial equations does not involve a particular method of 
solving a boundary-value problem. There are two basic methods known that implement #is ap- 
proach in general form: simple iteration and successive loadings /4/. In the first case, the 
nonlinear terms are carried over to the right side of the equations and interpreted as an ad- 
ditional load tobedetermined by means of iterations. In the second method, the entire load- 
ing process is divided into a series of stages at each of which the increments in the resolv- 
ent functions satisfy a linear system of equations whose coefficients are the values of the 
very functions accumulated over all the preceding stages of the loading. However, the applic- 
ability of the simple iteration method is limited by its poor rate of convergence, which 
breaks down at deflections on the order of the thickness, while the method of successive load- 
ings is limited by the error of linearization created in the loading process. 

Below we present a method of linearizing a system of resolvent equations of applied shell 
theory that is free of these drawbacks. 

Let us consider a shell of constant thickness h made of a homogeneous isotropic material 
with modulus of elasticity E and Poisson coefficient v affected by an arbitrary system of 
forces with components X,, X, and X, in a curvilinear coordinate system a,a,a, (a1 and QZ are 
the directions of the principal curvatures, and a, is the normal to the median surface). With- 

in the framework of the applied theory, the system of resolvent equations in a mixed foml that 
describes the elastic equilibrium of the shell may be reduced to the form /5/ 

DAAw + Ak 0 + L((w, CD) = ~1 (1) 
HAAct, - Akw - 'I, L(w, w) = p2 

Here w and U, are the deflection and stress function; D and H, the flexural rigidity and 

tensile flexibility; Al and AS, Lam6 coefficients; u, potential of the tangential load com- 

ponents X1 and X,; also k, and k,, principal curvatures. 
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The system (1) is nonlinear because of the presence of the operators L. Let us repre- 

sent the nonlinear operator in the first equation of (1) in the form (S is some constant) 

L (IU, @) = SL (a, ID) + (1 - S) L (zu, CD) 

We introduce the notation 

'PI = '/*UT. (p* = (1 - S) w, r&q = S@ 

The system (1) may be written in the form 

(2) 

DAAw + L ((~3, w) + AA + L ((Pa @) = PI 
HAA@ - A,w - L (cpl, W) = Pz 

(3) 

The quantities cpI in (3) will be determined through successive approy;mations; here we 
take some initial approximation WCO), @(O) 
this approximation. 

and then determine a valuTo,of 'pi corresponding to 
Solving the system (3) for given values of cp, , we find the nextapprox- 

imation w(l), cb(" , and so on. The process continues until the difference between asucceeding 
and preceding approximation corresponds to an assigned solution accuracy. Thus at each step 
of the iteration a linear system of the form (3) with given parameters 9, must be solved. 

We rewrite (3) in the form 

L, [w, 01 G DAAw + L ((pa, w) + A,@ = p1 
L, [w, 01 s HAA@ - A,w = pz 

(4) 

Atw = Ikz + Rz, (vi)1 RI, (w) + [h + RI, (cP~)] R,t (4 - 
24, (cpz) 4, 04; i = 1, 2 

The quantity rp3 in the system (4) is an additional flexural rigidity of the shell, while 
the additional curvature Rjj(q,) and torsion R,,(cpi) parameters for the median surface occur 
in the operators Ai. Consequently, the initial nonlinear system (1) is replaced by a sequ- 
ence of linear systems of the form (4) with additional rigidity, curvature, and torsion para- 
meters that may be determined by means of iterations. The coefficient S describes the con- 
tribution made by the additional flexural rigidity to the overall level of nonlinearity of 
the system (1). When S =0 in (4), the only additional parameters are the curvature and 
torsion of the median surface of the shell, which depend on w, i.e., the flexural rigidity 
does not participate in the iterational process. If s=o.5, the additional curvature and 
torsion parameters in the two equations of the system (4) are the same (A1 = A*), and the ad- 
ditional flexural rigidity is determined by the relation (p3 = 0.5 @. 

To construct the deformation curve, the algorithm must allow for the replacement of the 
leading parameters, i.e., it is not the external load which is given, but rather some other 
parameter of the stress-deformation state of the shell. We represent the external load in the 
form 

Pz = QQi (a,, a,); i = 1, 2 (5) 

where qi are given functions and Q is an unknown constant. 
Since the system (4) is linear, by the principle of superposition its solution may be re- 

presented in the form 

w = Qw,; @ = Q@,; Lj Iwo, @,,I = qi; i = 1, 2 (6) 

From relations (6), it is possible to find the unknown constant Q, which corresponds to 
a given value of the any leading parameter. Suppose the solution of the linear system of dif- 
ferential equations (4) is determined by the N + 1 independent variables zj, where N of the 
variables depend on the method of discretization of the problem (in the Bubnov-Galerkin, 
Rayleigh- Ritz, and collocation methods, these variables will be the coefficients of the cor- 
responding functional series; in the method of finite differences, the values of the resolvent 
functions at the nodes of the network, etc.), while the (N i- I)-th independent variable is 
the load parameter (z,,,+i =Q). In this case, the system of differential equations (4) is re- 
placed by an algebraic analog is a system of linear algebraic equations 

4 aijzf + QOt = 0; i=1,2,...,N (7) 

The relations in (6) assume the form 

Z, = Qij; j = 1, 2, . . ., N 
N (8) 
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In constructing the deformation curve in an (N i_ I)-dimensional space 2 of variables 
the entire loading process is divided into a series of stages at each of which one of the 

;I' 

variables zi or some combination of the variables may be taken as the leading parameter /6/. 
Let us suppose that the solution has been found for the two loading stages z,, and +. 

With these solutions we associate two points in the space 2 through which we drawalinewhose 
parameter J. is made the leading parameter at the next loading stage. The equation of this 
line has the form (in parametric expression) 

ZJ = zlj 7 h (22, - “*,); j = 1, 2, . . ., N T 1 (9) 

We fix h and through the point corresponding to this parameter draw the hyperplane per- 
pendicular to the line (9). The equation of this plane has the form 

- zlj) b, - ZlJ - h (&J - ZlJ)] = 0 
(10) 

The solution of the system (7) will be found in the hyperplane (10). Substituting (8) in 
(10) yields an equation for determining the load parameter: 

N+l 

Q = ,zl (at - ZIJ) IZlj + h t&J - hAI [rgll (ZZJ - ZIJ) b]-’ t EN+1 = 1 
(11) 

The relations of (11) and (8) determine the solution of the system (7) at each step of 
the iteration. By this choice of the leading parameter, we are able to extend the algorithm 
to all the limiting points and cusps on the deformation curve. The choice of the initial ap- 
proximation exerts a major influence on the rate of convergence of the iterational process. 
Following /2/, this approximation may be constructed by extrapolating the solutions from the 
preceding stages of the loading. For this purpose, we construct an interpolational polynomial 
and select as our initial approximation the point at which the curve corresponding to this 
polynomial intersects the hyperplane (10). Clearly, the higher the degree of the approximat- 
ing polynomial, the better the correspondence between the curve and the true deformationcurve 
and the faster the rate of convergence of the iterational process. In the simplest case, 
this polynomial may be linear in form, i.e., we select as the initial approximation a point 
lying on the line (9) and the corresponding value of the leading parameter h. 

At the first stage of the loading, the solution of the linear problem (the system (3) for 
rpi = 0) and the trivial solution .zSj = 0 may be selected as the zl, and z,, . The numerical 
value of the parameter h may be selected as a function of the rate of convergence of the iter- 
ationhl process at the preceding stage of loading. The value h -0 corresponds tothepoint 
zl, on the line (9), and the value k = 1 to the point - . Consequently, at the following 

loading stage we must have h>l. When h = 2, the so?ktion will be found on a hyperplane 
lying at the same distance d from the point +j as the point eu (d = Izpj - zlJ 1). We fix some 
number of iterations r0. If the number of iterations that are required to obtain a solution 
with an assigned accuracy e atthepreceding loading stage amounts to r,<r,, at the next stage 
we must have h> 2, i.e., a solution is found in the hyperplane at a distance d> 1 Zaj - zl,j 
from the point ZIP. Otherwise, l<h <2 (d<( +j - zlj 1). The relation A from ro and rl may 
be taken, for example in the form 

Here the parameter h. varies over the range 1 <h<3, i.e., the maximal distance d from 
the point Zgj to the hyperplane (10) is at most 21 zgj - zl,,l. At the first loading stage, the 
distance between the initial points (the linear and trivial solutions) must be selected such 
that the influence of geometric nonlinearity would be obviously negligible (for example,with 
a maximal flexure on the order of 0.2h). 

The convergence of the algorithm at the r-th step of the iteration may be controlled by 
means of the quantity 

I <E 

To study the convergence of our algorithm, we reviewed the problem of determining the 
equilibrium of a shell which is hollow above some plane; here it may be assumed that the 
metric of the median surface coincides with the metric of the plane 

a, = I, a0 = y, A,=A,= 1 
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AS an example, we consider a proposed rectangle in plane o x b spherical panel whose 
edges are hinged and which is affected by a uniformly distributed transverse load Pa @I = Pai 

pa= 0). The solution of the linear system (4) is constructed in the double trigonometricseries 

(12) 

Substituting (12) in (4) and applying the Bubnov-Galerkin procedure, we arrive at a 
linear system of algebraic equations of the form (7). Since the stress function inthesecond 
equation of the system (4) occurs in the differential operators With Constant coefficients, 

the quantities Qnrn may be eliminated from (7) without any difficulty. Consequently, the only 
independent variables zj are only the coefficients w,,o f the expansion of the deflection in 

a Fourier series. The computations are conducted for 

b = 8; k, = h, = 18hla=; v = 0.3 

We have retained nine terms in the series of (12) (n, m = 1,&s). A further increase in 
n and m will not lead to a marked change in the results. The initial distance between the 

points $1 and ztj are selected in such a way that the deflection at the center of the panel 
amounts of 0.2h, and the fixed number of iterations is taken as r0 = 5. The influence of the 
coefficient S in (2) on the rate of convergence of the iterational process was studied. 

Table 1 

The results of the computations are presented inthe accompanying table; in the first column 
may be found the valuesof the deflection at the center of the panel, in the second column the 
corresponding values of the loading parameter, andinthe other columns the number of itera- 
tions required to construct the solution to within e = lo/a for different values of the coef- 
ficient S. From the table, it is clear that ontheinitial segment of the deformation curve 
the rate of convergence for all S is virtually the same, but somewhat better when S = 1. 
However, it subsequently speeds up when S = 0, and for a deflection up>38 at S = I, the con- 
vergence oftheprocess breaks down. 

Thus the optimal value of S (from the standpoint of the rate of convergence of the iter- 
ational process) may differ at different segments of the deformation curve and will depend on 
the particular features of the problem under consideration. It is difficult to predict the 
optimal value of this parameter, though there are certain general recommendations for select- 
ing it. From the physical standpoint, the quantity S.loO% indicates the contribution of the 
supplementary flexural rigidity to the overall level of nonlinearity (or (1 - S)-1000/o which 
is the proportion of the supplementary curvature and torsion parameters). 

This exampleshows that at low deflections the supplementary flexural rigidity makes the 
major contribution, that in a neighborhood of the first limiting point the proportions of the 
additional rigidity and curvature are roughly the same, and that subsequently the additional 
curvature and torsion parameters play the basic role. In the general case, it is best to 
select S= 1 on the precritical branch; S= 0.5 in a nighborhood of the first limiting point; 
and s =o in the post-critical stage of deformation. 
though it must, in all likelihood, 

This choice of S may not be optimal, 
ensure a sufficiently rapid rate of convergence of the 

iterational process. 
The initial system of differential equations (4) is linear, 

be extended to the case of multi-parameter loading. 
therefore our algorithm may 

Suppose that a system of&I forces is 
applied to the shell, and that these forces may be related to the load terms pia in the right 
side of the equations (1). We represent these quantities in the form 

pik = Qrqir (Ccl, a,); i = 1, 2; k = 1, 2, . . ., M (13) 
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where q{k are given fU&CtiOnS and Qt axe unknown constants. 
Since the system (4) is linear , its solution may be represented in the form 

1141 

1x1 the M-dimensional space Qk of variables, the curve that describes the loading pro- 
gram may be selected arbitrarily. Suppose the equation of this curve is given in the para- 
metric form 

QE = F, (t); k = 1, 2, . a ., M (151 
where t is the parameter of the curve (far example, arc length). 

The deformation curvs will be constructed in the (N + i)-dimensional space Z of variables 

21 (j = 1, 2, . . ., iv) and the parameter t (z~+~ = t) of the curve (15). In this case the algebraic 
analog of the system (4) has the form 

The relation (14) may be written, using the variables 2,' in the form 

r;=+,F~(t)~~; j=h2,... ,N (16) 

Substituting (16) in 
found yields 

the equation of the hyperplane (10) in which the solution will be 

The latter equation is a nonlinear algebraic equation for the unknown loading parameter 
t whose solution may be obtained by direct search. For the initial value to, we have 

to = t, + h (tn - tl) (18) 

which corresponds to the point lying on the line (9) for a given leading parameter 1 <a <3. 
The root t marest ts is found by constructing a procedure for direct search for the equation 
(17) with initial value (18) in two opposite directions. Substituting the resulting value of 
t in (16) yields the remaining ccmponants of the solution z,. Thus in the case of multi- 

parametric loading of a shell according to an arbitrarily selected program (151, the entire 
algorithm remains unchanged, except for the loading parameter, which is determined not from 
(11) (as in the caseof single-parameter loading), but numerically from a nonlinear equation 
of the form (171. 

BY means of our algorithm, it is possible to construct a deformation curve in an(N + If- 
dimensional space 2 of variables z, and the loading parameter t. The initial nonlinear equa- 
tion (1) must be subjected to a bifurcation in order to localize the general-form branching 
points (and not just the Limiting points) on each loading stage. The linearized system of 
equations for the perturbed state may be written in the form 

DAAw+L(@*, W)+A&b+L(tv*, @)=O (191 

XAdQt-Abxw-L(w*, to)=0 

where w*, @* is the solution of the initial nonlinear System (1). 

The coefficients of the system (3.9) coincide, to within a constant multiplier, with the 
coefficients (2) of the linearized system (3). Consequently, there is no particular difficul- 
ty presented by the construction of the algebraic analog of the system (19), since the ele- 
ments of its matrix aij* coincide, to within a constant multiplier, with the elements ai] of 
the matrix of the system (7). When the determinant det(a*j*) vanishes, this will mean that 
there is a nontrivial solution of the system (191. Thus in constructing the deformationcurve 
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it is necessary to determine the sign of the determinant det(aij*) on each loading stage, as 
a change in this sign indicates the presence of a bifurcation point on the deformation curve. 
To construct the solution on the secondary branch, it is necessary to introduce a perturbation 
in the initial approximation based on the obviously trivial components zj, i.e., to derive a 

solution from the initial hyperplane of nonsero components. 
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